Seventeenth International Olympiad, 1975

1975/1.

Let $x_i, y_i \ (i = 1, 2, ..., n)$ be real numbers such that

$$x_1 \ge x_2 \ge \dots \ge x_n$$
 and $y_1 \ge y_2 \ge \dots \ge y_n$.

Prove that, if z_1, z_2, \dots, z_n is any permutation of y_1, y_2, \dots, y_n , then

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2.$$

1975/2.

Let a_1, a_2, a_3, \cdots be an infinite increasing sequence of positive integers. Prove that for every $p \geq 1$ there are infinitely many a_m which can be written in the form

$$a_m = xa_p + ya_q$$

with x, y positive integers and q > p.

1975/3.

On the sides of an arbitrary triangle ABC, triangles ABR, BCP, CAQ are constructed externally with $\angle CBP = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle ACQ = 30^{\circ}$, $\angle ABR = \angle BAR = 15^{\circ}$. Prove that $\angle QRP = 90^{\circ}$ and QR = RP.

1975/4.

When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)

1975/5.

Determine, with proof, whether or not one can find 1975 points on the circumference of a circle with unit radius such that the distance between any two of them is a rational number.

1975/6.

Find all polynomials P, in two variables, with the following properties:

(i) for a positive integer n and all real t, x, y

$$P(tx, ty) = t^n P(x, y)$$

(that is, P is homogeneous of degree n),

(ii) for all real a, b, c,

$$P(b+c,a) + P(c+a,b) + P(a+b,c) = 0,$$

(iii)
$$P(1,0) = 1$$
.