42nd International Mathematical Olympiad

Washington, DC, United States of America July 8–9, 2001

Problems

Each problem is worth seven points.

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.

Suppose that $\angle BCA \ge \angle ABC + 30^{\circ}$.

Prove that $\angle CAB + \angle COP < 90^{\circ}$.

Problem 2

Prove that

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1$$

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4

Let n be an odd integer greater than 1, and let $k_1, k_2, ..., k_n$ be given integers. For each of the n! permutations $a = (a_1, a_2, ..., a_n)$ of 1, 2, ..., n, let

$$S(a) = \sum_{i=1}^{n} k_i a_i.$$

Prove that there are two permutations b and c, $b \neq c$, such that n! is a divisor of S(b) - S(c).

Problem 5

In a triangle ABC, let AP bisect $\angle BAC$, with P on BC, and let BQ bisect $\angle ABC$, with Q on CA.

It is known that $\angle BAC = 60^{\circ}$ and that AB + BP = AQ + QB.

What are the possible angles of triangle ABC?

Problem 6

Let a, b, c, d be integers with a > b > c > d > 0. Suppose that

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that ab + cd is not prime.