

Language: English

Day: **1**

Friday, July 10, 2015

Problem 1. We say that a finite set S of points in the plane is *balanced* if, for any two different points A and B in S, there is a point C in S such that AC = BC. We say that S is *centre-free* if for any three different points A, B and C in S, there is no point P in S such that PA = PB = PC.

- (a) Show that for all integers $n \ge 3$, there exists a balanced set consisting of n points.
- (b) Determine all integers $n \ge 3$ for which there exists a balanced centre-free set consisting of n points.

Problem 2. Determine all triples (a, b, c) of positive integers such that each of the numbers

$$ab-c$$
, $bc-a$, $ca-b$

is a power of 2.

(A power of 2 is an integer of the form 2^n , where n is a non-negative integer.)

Problem 3. Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircle, H its orthocentre, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on Γ such that $\angle HQA = 90^{\circ}$, and let K be the point on Γ such that $\angle HKQ = 90^{\circ}$. Assume that the points A, B, C, K and Q are all different, and lie on Γ in this order.

Prove that the circumcircles of triangles KQH and FKM are tangent to each other.

Language: English

Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 2

Saturday, July 11, 2015

Problem 4. Triangle ABC has circumcircle Ω and circumcentre O. A circle Γ with centre A intersects the segment BC at points D and E, such that B, D, E and C are all different and lie on line BC in this order. Let F and G be the points of intersection of Γ and Ω , such that A, F, B, C and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle BDF and the segment AB. Let E be the second point of intersection of the circumcircle of triangle E and the segment E

Suppose that the lines FK and GL are different and intersect at the point X. Prove that X lies on the line AO.

Problem 5. Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the equation

$$f(x+f(x+y)) + f(xy) = x + f(x+y) + yf(x)$$

for all real numbers x and y.

Problem 6. The sequence a_1, a_2, \ldots of integers satisfies the following conditions:

- (i) $1 \leqslant a_i \leqslant 2015$ for all $j \geqslant 1$;
- (ii) $k + a_k \neq \ell + a_\ell$ for all $1 \leq k < \ell$.

Prove that there exist two positive integers b and N such that

$$\left| \sum_{j=m+1}^{n} (a_j - b) \right| \leqslant 1007^2$$

for all integers m and n satisfying $n > m \ge N$.

Language: English

Time: 4 hours and 30 minutes
Each problem is worth 7 points