Numbers on a Board

At the beginning of the day, four integers are written on the board (`a_0,b_0,c_0,d_0`). Every minute, Danny replaces the four numbers on the board with a new set of four numbers according to the following rule: If the numbers written on the board are (a,b,c,d), Danny first generates the numbers
`a'=a+4b+16c+64d`
`b'=b+4c+16d+64a`
`c'=c+4d+16a+64b`
`d'=d+4a+16b+64c`
Then he erases the numbers (a,b,c,d) and writes in their place the numbers (a',d',c',b'). For which initial sets (`a_0,b_0,c_0,d_0`) will Danny eventually write a set of four numbers that are all divisible by `5780^5780`

Difficulty level (1 very easy - 10 very hard): 3

Topics:
Number Theory -> Modular Arithmetic / Remainder Arithmetic -> Divisibility Rules Number Theory -> Division -> Parity (Even/Odd) Algebra -> Sequences
Sources:
There are no comments yet.
Authentication required

You must log in to post a comment.

Log in