שמונה עשרה אבני דומינו
האיור מציג שמונה עשרה אבני דומינו המסודרות בצורת ריבוע, כך שמספר הנקודות בכל אחד מששת הטורים, שש השורות ושני האלכסונים הארוכים מסתכם ל-`13`. זהו הסכום הקטן ביותר האפשרי עם מבחר כלשהו של אבני דומינו מקופסה רגילה של עשרים ושמונה. הסכום הגדול ביותר האפשרי הוא `23`, ופתרון למספר זה ניתן להשיג בקלות על ידי החלפת כל מספר במשלים שלו ל-`6`. לכן, עבור כל ריבוע ריק, החליפו `6`, עבור כל `1` החליפו `5`, עבור כל `2` החליפו `4`, עבור `3` החליפו `3`, עבור `4` החליפו `2`, עבור `5` החליפו `1`, ועבור `6` החליפו ריבוע ריק. אבל החידה היא לבצע בחירה של שמונה עשרה אבני דומינו ולסדר אותן (בדיוק בצורה המוצגת) כך שהסכומים יהיו `18` בכל ארבעה עשר הכיוונים שהוזכרו.

נושאים:
חידות ורבוסים
- שעשועונים במתמטיקה, הנרי ארנסט דודני שאלה 406
עדיין אין תגובות.