הבעיה של סתת האבנים
לסתת אבנים היה פעם מספר גדול של קוביות אבן בחצר שלו, כולן באותו גודל בדיוק. היו לו כמה הרגלים קטנים דמיוניים מאוד, ואחד הרעיונות המוזרים שלו היה לשמור את הבלוקים האלה מוערמים בערימות מעוקבות, כך שאין שתי ערימות שמכילות את אותו מספר בלוקים. הוא גילה בעצמו (עובדה שידועה היטב למתמטיקאים) שאם הוא היה לוקח את כל הבלוקים הכלולים במספר כלשהו של ערימות בסדר רגיל, החל מהקוביה הבודדת, הוא תמיד יכול היה לסדר אותם על הקרקע כדי ליצור ריבוע מושלם. זה יהיה ברור לקורא, מכיוון שבלוק אחד הוא ריבוע, `1+8 = 9` הוא ריבוע, `1+8+27=36` הוא ריבוע, `1+8+27+64=100` הוא ריבוע, וכן הלאה. למעשה, סכום כל מספר של קוביות עוקבות, החל תמיד מ-`1`, הוא בכל מקרה מספר ריבועי.
יום אחד נכנס ג'נטלמן לחצר של הבנאי והציע לו מחיר מסוים אם יספק לו מספר עוקב של ערימות מעוקבות אלה, שאמורות להכיל יחד מספר בלוקים שניתן לפרוס ליצירת ריבוע, אך הקונה התעקש על יותר משלוש ערימות וסירב לקחת את הבלוק הבודד מכיוון שהיה בו פגם. מה היה המספר הקטן ביותר האפשרי של בלוקי אבן שהבנאי היה צריך לספק?
מקורות:
- שעשועונים במתמטיקה, הנרי ארנסט דודני שאלה 135