Amusements in Mathematics, Henry Ernest Dudeney

  • Question 401 - EIGHT JOLLY GAOL BIRDS

     

    The illustration shows the plan of a prison of nine cells all communicating with one another by doorways. The eight prisoners have their numbers on their backs, and any one of them is allowed to exercise himself in whichever cell may happen to be vacant, subject to the rule that at no time shall two prisoners be in the same cell. The merry monarch in whose dominions the prison was situated offered them special comforts one Christmas Eve if, without breaking that rule, they could so place themselves that their numbers should form a magic square.

    Now, prisoner No. `7` happened to know a good deal about magic squares, so he worked out a scheme and naturally selected the method that was most expeditious—that is, one involving the fewest possible moves from cell to cell. But one man was a surly, obstinate fellow (quite unfit for the society of his jovial companions), and he refused to move out of his cell or take any part in the proceedings. But No. `7` was quite equal to the emergency, and found that he could still do what was required in the fewest possible moves without troubling the brute to leave his cell. The puzzle is to show how he did it and, incidentally, to discover which prisoner was so stupidly obstinate. Can you find the fellow?

  • Question 402 - NINE JOLLY GAOL BIRDS

    Shortly after the episode recorded in the last puzzle occurred, a ninth prisoner was placed in the vacant cell, and the merry monarch then offered them all complete liberty on the following strange conditions. They were required so to rearrange themselves in the cells that their numbers formed a magic square without their movements causing any two of them ever to be in the same cell together, except that at the start one man was allowed to be placed on the shoulders of another man, and thus add their numbers together, and move as one man. For example, No. `8` might be placed on the shoulders of No. `2`, and then they would move about together as `10`. The reader should seek first to solve the puzzle in the fewest possible moves, and then see that the man who is burdened has the least possible amount of work to do.
  • Question 403 - THE SPANISH DUNGEON

    Not fifty miles from Cadiz stood in the middle ages a castle, all traces of which have for centuries disappeared. Among other interesting features, this castle contained a particularly unpleasant dungeon divided into sixteen cells, all communicating with one another, as shown in the illustration.

    Now, the governor was a merry wight, and very fond of puzzles withal. One day he went to the dungeon and said to the prisoners, "By my halidame!" (or its equivalent in Spanish) "you shall all be set free if you can solve this puzzle. You must so arrange yourselves in the sixteen cells that the numbers on your backs shall form a magic square in which every column, every row, and each of the two diagonals shall add up the same. Only remember this: that in no case may two of you ever be together in the same cell."

    One of the prisoners, after working at the problem for two or three days, with a piece of chalk, undertook to obtain the liberty of himself and his fellow-prisoners if they would follow his directions and move through the doorway from cell to cell in the order in which he should call out their numbers. 

     

    He succeeded in his attempt, and, what is more remarkable, it would seem from the account of his method recorded in the ancient manuscript lying before me, that he did so in the fewest possible moves. The reader is asked to show what these moves were.

  • Question 404 - THE SIBERIAN DUNGEONS

     

    The above is a trustworthy plan of a certain Russian prison in Siberia. All the cells are numbered, and the prisoners are numbered the same as the cells they occupy. The prison diet is so fattening that these political prisoners are in perpetual fear lest, should their pardon arrive, they might not be able to squeeze themselves through the narrow doorways and get out. And of course it would be an unreasonable thing to ask any government to pull down the walls of a prison just to liberate the prisoners, however innocent they might be. Therefore these men take all the healthy exercise they can in order to retard their increasing obesity, and one of their recreations will serve to furnish us with the following puzzle.

    Show, in the fewest possible moves, how the sixteen men may form themselves into a magic square, so that the numbers on their backs shall add up the same in each of the four columns, four rows, and two diagonals without two prisoners having been at any time in the same cell together. I had better say, for the information of those who have not yet been made acquainted with these places, that it is a peculiarity of prisons that you are not allowed to go outside their walls. Any prisoner may go any distance that is possible in a single move.

  • Question 405 - CARD MAGIC SQUARES

    Take an ordinary pack of cards and throw out the twelve court cards. Now, with nine of the remainder (different suits are of no consequence) form the above magic square. It will be seen that the pips add up fifteen in every row in every column, and in each of the two long diagonals. The puzzle is with the remaining cards (without disturbing this arrangement) to form three more such magic squares, so that each of the four shall add up to a different sum. There will, of course, be four cards in the reduced pack that will not be used. These four may be any that you choose. It is not a difficult puzzle, but requires just a little thought.
  • Question 406 - THE EIGHTEEN DOMINOES

    The illustration shows eighteen dominoes arranged in the form of a square so that the pips in every one of the six columns, six rows, and two long diagonals add up `13`. This is the smallest summation possible with any selection of dominoes from an ordinary box of twenty-eight. The greatest possible summation is `23`, and a solution for this number may be easily obtained by substituting for every number its complement to `6`. Thus for every blank substitute a `6`, for every `1` a `5`, for every `2` a `4`, for `3` a `3`, for `4` a `2`, for `5` a `1`, and for `6` a blank. But the puzzle is to make a selection of eighteen dominoes and arrange them (in exactly the form shown) so that the summations shall be `18` in all the fourteen directions mentioned.

  • Question 407 - TWO NEW MAGIC SQUARES

    Construct a subtracting magic square with the first sixteen whole numbers that shall be "associated" by subtraction. The constant is, of course, obtained by subtracting the first number from the second in line, the result from the third, and the result again from the fourth. Also construct a dividing magic square of the same order that shall be "associated" by division. The constant is obtained by dividing the second number in a line by the first, the third by the quotient, and the fourth by the next quotient.
  • Question 408 - MAGIC SQUARES OF TWO DEGREES

    While reading a French mathematical work I happened to come across, the following statement: "A very remarkable magic square of `8`, in two degrees, has been constructed by M. Pfeffermann. In other words, he has managed to dispose the sixty-four first numbers on the squares of a chessboard in such a way that the sum of the numbers in every line, every column, and in each of the two diagonals, shall be the same; and more, that if one substitutes for all the numbers their squares, the square still remains magic." I at once set to work to solve this problem, and, although it proved a very hard nut, one was rewarded by the discovery of some curious and beautiful laws that govern it. The reader may like to try his hand at the puzzle.

  • Question 409 - THE BASKETS OF PLUMS

     

    This is the form in which I first introduced the question of magic squares with prime numbers. I will here warn the reader that there is a little trap.

    A fruit merchant had nine baskets. Every basket contained plums (all sound and ripe), and the number in every basket was different. When placed as shown in the illustration they formed a magic square, so that if he took any three baskets in a line in the eight possible directions there would always be the same number of plums. This part of the puzzle is easy enough to understand. But what follows seems at first sight a little queer.

    The merchant told one of his men to distribute the contents of any basket he chose among some children, giving plums to every child so that each should receive an equal number. But the man found it quite impossible, no matter which basket he selected and no matter how many children he included in the treat. Show, by giving contents of the nine baskets, how this could come about.

  • Question 410 - THE MANDARIN'S "T" PUZZLE

     

    Before Mr. Beauchamp Cholmondely Marjoribanks set out on his tour in the Far East, he prided himself on his knowledge of magic squares, a subject that he had made his special hobby; but he soon discovered that he had never really touched more than the fringe of the subject, and that the wily Chinee could beat him easily. I present a little problem that one learned mandarin propounded to our traveller, as depicted on the last page.

    The Chinaman, after remarking that the construction of the ordinary magic square of twenty-five cells is "too velly muchee easy," asked our countryman so to place the numbers `1` to `25` in the square that every column, every row, and each of the two diagonals should add up `65`, with only prime numbers on the shaded "T." Of course the prime numbers available are `1, 2, 3, 5, 7, 11, 13, 17, 19`, and `23`, so you are at liberty to select any nine of these that will serve your purpose. Can you construct this curious little magic square?