Logic
Logic is the study of reasoning and valid inference. It involves analyzing statements, arguments, and deductive processes. Questions may include solving logic puzzles, evaluating the truth of compound statements, using truth tables, and identifying logical fallacies.
Reasoning / Logic Truth-tellers and Liars Problems-
QUEER CHESS
Can you place two White rooks and a White knight on the board so that the Black king (who must be on one of the four squares in the middle of the board) shall be in check with no possible move open to him? "In other words," the reader will say, "the king is to be shown checkmated." Well, you can use the term if you wish, though I intentionally do not employ it myself. The mere fact that there is no White king on the board would be a sufficient reason for my not doing so. Sources:- Amusements in Mathematics, Henry Ernest Dudeney Question 356
-
CHESSBOARD SOLITAIRE
Here is an extension of the last game of solitaire. All you need is a chessboard and the thirty-two pieces, or the same number of draughts or counters. In the illustration numbered counters are used. The puzzle is to remove all the counters except two, and these two must have originally been on the same side of the board; that is, the two left must either belong to the group `1` to `16` or to the other group, `17` to `32`. You remove a counter by jumping over it with another counter to the next square beyond, if that square is vacant, but you cannot make a leap in a diagonal direction. The following moves will make the play quite clear: `3-11`, `4-12`, `3-4`, `13-3`. Here `3` jumps over `11`, and you remove `11`; `4` jumps over `12`, and you remove `12`; and so on. It will be found a fascinating little game of patience, and the solution requires the exercise of some ingenuity.
Sources:Topics:Combinatorics -> Game Theory Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures Puzzles and Rebuses- Amusements in Mathematics, Henry Ernest Dudeney Question 360
-
THE MONSTROSITY
One Christmas Eve I was travelling by rail to a little place in one of the southern counties. The compartment was very full, and the passengers were wedged in very tightly. My neighbour in one of the corner seats was closely studying a position set up on one of those little folding chessboards that can be carried conveniently in the pocket, and I could scarcely avoid looking at it myself. Here is the position:—
My fellow-passenger suddenly turned his head and caught the look of bewilderment on my face.
"Do you play chess?" he asked.
"Yes, a little. What is that? A problem?"
"Problem? No; a game."
"Impossible!" I exclaimed rather rudely. "The position is a perfect monstrosity!"
He took from his pocket a postcard and handed it to me. It bore an address at one side and on the other the words "`43`. K to Kt `8`."
"It is a correspondence game." he exclaimed. "That is my friend's last move, and I am considering my reply."
"But you really must excuse me; the position seems utterly impossible. How on earth, for example—"
"Ah!" he broke in smilingly. "I see; you are a beginner; you play to win."
"Of course you wouldn't play to lose or draw!"
He laughed aloud."You have much to learn. My friend and myself do not play for results of that antiquated kind. We seek in chess the wonderful, the whimsical, the weird. Did you ever see a position like that?"
I inwardly congratulated myself that I never had.
"That position, sir, materializes the sinuous evolvements and syncretic, synthetic, and synchronous concatenations of two cerebral individualities. It is the product of an amphoteric and intercalatory interchange of—"
"Have you seen the evening paper, sir?" interrupted the man opposite, holding out a newspaper. I noticed on the margin beside his thumb some pencilled writing. Thanking him, I took the paper and read—"Insane, but quite harmless. He is in my charge."
After that I let the poor fellow run on in his wild way until both got out at the next station.
But that queer position became fixed indelibly in my mind, with Black's last move `43`. K to Kt `8`; and a short time afterwards I found it actually possible to arrive at such a position in forty-three moves. Can the reader construct such a sequence? How did White get his rooks and king's bishop into their present positions, considering Black can never have moved his king's bishop? No odds were given, and every move was perfectly legitimate.
Sources:- Amusements in Mathematics, Henry Ernest Dudeney Question 361
-
THE WASSAIL BOWL
One Christmas Eve three Weary Willies came into possession of what was to them a veritable wassail bowl, in the form of a small barrel, containing exactly six quarts of fine ale. One of the men possessed a five-pint jug and another a three-pint jug, and the problem for them was to divide the liquor equally amongst them without waste. Of course, they are not to use any other vessels or measures. If you can show how it was to be done at all, then try to find the way that requires the fewest possible manipulations, every separate pouring from one vessel to another, or down a man's throat, counting as a manipulation.
Sources:Topics:Algebra -> Word Problems Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures- Amusements in Mathematics, Henry Ernest Dudeney Question 362
-
THE BARREL PUZZLE
The men in the illustration are disputing over the liquid contents of a barrel. What the particular liquid is it is impossible to say, for we are unable to look into the barrel; so we will call it water. One man says that the barrel is more than half full, while the other insists that it is not half full. What is their easiest way of settling the point? It is not necessary to use stick, string, or implement of any kind for measuring. I give this merely as one of the simplest possible examples of the value of ordinary sagacity in the solving of puzzles. What are apparently very difficult problems may frequently be solved in a similarly easy manner if we only use a little common sense.
Sources:
- Amusements in Mathematics, Henry Ernest Dudeney Question 364
-
CROSSING THE STREAM
During a country ramble Mr. and Mrs. Softleigh found themselves in a pretty little dilemma. They had to cross a stream in a small boat which was capable of carrying only `150` lbs. weight. But Mr. Softleigh and his wife each weighed exactly `150` lbs., and each of their sons weighed `75` lbs. And then there was the dog, who could not be induced on any terms to swim. On the principle of "ladies first," they at once sent Mrs. Softleigh over; but this was a stupid oversight, because she had to come back again with the boat, so nothing was gained by that operation. How did they all succeed in getting across? The reader will find it much easier than the Softleigh family did, for their greatest enemy could not have truthfully called them a brilliant quartette—while the dog was a perfect fool.Sources:Topics:Algebra -> Word Problems Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures- Amusements in Mathematics, Henry Ernest Dudeney Question 373
-
CROSSING THE RIVER AXE
Many years ago, in the days of the smuggler known as "Rob Roy of the West," a piratical band buried on the coast of South Devon a quantity of treasure which was, of course, abandoned by them in the usual inexplicable way. Some time afterwards its whereabouts was discovered by three countrymen, who visited the spot one night and divided the spoil between them, Giles taking treasure to the value of £`800`, Jasper £`500` worth, and Timothy £`300` worth. In returning they had to cross the river Axe at a point where they had left a small boat in readiness. Here, however, was a difficulty they had not anticipated. The boat would only carry two men, or one man and a sack, and they had so little confidence in one another that no person could be left alone on the land or in the boat with more than his share of the spoil, though two persons (being a check on each other) might be left with more than their shares. The puzzle is to show how they got over the river in the fewest possible crossings, taking their treasure with them. No tricks, such as ropes, "flying bridges," currents, swimming, or similar dodges, may be employed.
Sources:Topics:Algebra -> Word Problems Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures- Amusements in Mathematics, Henry Ernest Dudeney Question 374
-
FIVE JEALOUS HUSBANDS
During certain local floods five married couples found themselves surrounded by water, and had to escape from their unpleasant position in a boat that would only hold three persons at a time. Every husband was so jealous that he would not allow his wife to be in the boat or on either bank with another man (or with other men) unless he was himself present. Show the quickest way of getting these five men and their wives across into safety.
Call the men A, B, C, D, E, and their respective wives a, b, c, d, e. To go over and return counts as two crossings. No tricks such as ropes, swimming, currents, etc., are permitted.
Sources:Topics:Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures- Amusements in Mathematics, Henry Ernest Dudeney Question 375
-
THE FOUR ELOPEMENTS
Colonel B—— was a widower of a very taciturn disposition. His treatment of his four daughters was unusually severe, almost cruel, and they not unnaturally felt disposed to resent it. Being charming girls with every virtue and many accomplishments, it is not surprising that each had a fond admirer. But the father forbade the young men to call at his house, intercepted all letters, and placed his daughters under stricter supervision than ever. But love, which scorns locks and keys and garden walls, was equal to the occasion, and the four youths conspired together and planned a general elopement.
At the foot of the tennis lawn at the bottom of the garden ran the silver Thames, and one night, after the four girls had been safely conducted from a dormitory window to terra firma, they all crept softly down to the bank of the river, where a small boat belonging to the Colonel was moored. With this they proposed to cross to the opposite side and make their way to a lane where conveyances were waiting to carry them in their flight. Alas! here at the water's brink their difficulties already began.
The young men were so extremely jealous that not one of them would allow his prospective bride to remain at any time in the company of another man, or men, unless he himself were present also. Now, the boat would only hold two persons, though it could, of course, be rowed by one, and it seemed impossible that the four couples would ever get across. But midway in the stream was a small island, and this seemed to present a way out of the difficulty, because a person or persons could be left there while the boat was rowed back or to the opposite shore. If they had been prepared for their difficulty they could have easily worked out a solution to the little poser at any other time. But they were now so hurried and excited in their flight that the confusion they soon got into was exceedingly amusing—or would have been to any one except themselves.
As a consequence they took twice as long and crossed the river twice as often as was really necessary. Meanwhile, the Colonel, who was a very light sleeper, thought he heard a splash of oars. He quickly raised the alarm among his household, and the young ladies were found to be missing. Somebody was sent to the police-station, and a number of officers soon aided in the pursuit of the fugitives, who, in consequence of that delay in crossing the river, were quickly overtaken. The four girls returned sadly to their homes, and afterwards broke off their engagements in disgust.
For a considerable time it was a mystery how the party of eight managed to cross the river in that little boat without any girl being ever left with a man, unless her betrothed was also present. The favourite method is to take eight counters or pieces of cardboard and mark them A, B, C, D, a, b, c, d, to represent the four men and their prospective brides, and carry them from one side of a table to the other in a matchbox (to represent the boat), a penny being placed in the middle of the table as the island.
Readers are now asked to find the quickest method of getting the party across the river. How many passages are necessary from land to land? By "land" is understood either shore or island. Though the boat would not necessarily call at the island every time of crossing, the possibility of its doing so must be provided for. For example, it would not do for a man to be alone in the boat (though it were understood that he intended merely to cross from one bank to the opposite one) if there happened to be a girl alone on the island other than the one to whom he was engaged.
Sources:Topics:Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures Puzzles and Rebuses- Amusements in Mathematics, Henry Ernest Dudeney Question 376
-
THE CARD FRAME PUZZLE
In the illustration we have a frame constructed from the ten playing cards, ace to ten of diamonds. The children who made it wanted the pips on all four sides to add up alike, but they failed in their attempt and gave it up as impossible. It will be seen that the pips in the top row, the bottom row, and the left-hand side all add up `14`, but the right-hand side sums to `23`. Now, what they were trying to do is quite possible. Can you rearrange the ten cards in the same formation so that all four sides shall add up alike? Of course they need not add up `14`, but any number you choose to select.
Sources:Topics:Arithmetic Algebra -> Equations Logic -> Reasoning / Logic Combinatorics -> Case Analysis / Checking Cases -> Processes / Procedures- Amusements in Mathematics, Henry Ernest Dudeney Question 381